Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
This white paper lays out a vision of research and development in the field of artificial intelligence for the next decade (and beyond). Its denouement is a cyber-physical ecosystem of natural and synthetic sense-making, in which humans are integral participants$\unicode{x2014}$what we call ''shared intelligence''. This vision is premised on active inference, a formulation of adaptive behavior that can be read as a physics of intelligence, and which inherits from the physics of self-organization. In this context, we understand intelligence as the capacity to accumulate evidence for a generative model of one's sensed world$\unicode{x2014}$also known as self-evidencing. Formally, this corresponds to maximizing (Bayesian) model evidence, via belief updating over several scales: i.e., inference, learning, and model selection. Operationally, this self-evidencing can be realized via (variational) message passing or belief propagation on a factor graph. Crucially, active inference foregrounds an existential imperative of intelligent systems; namely, curiosity or the resolution of uncertainty. This same imperative underwrites belief sharing in ensembles of agents, in which certain aspects (i.e., factors) of each agent's generative world model provide a common ground or frame of reference. Active inference plays a foundational role in this ecology of belief sharing$\unicode{x2014}$leading to a formal account of collective intelligence that rests on shared narratives and goals. We also consider the kinds of communication protocols that must be developed to enable such an ecosystem of intelligences and motivate the development of a shared hyper-spatial modeling language and transaction protocol, as a first$\unicode{x2014}$and key$\unicode{x2014}$step towards such an ecology.
translated by 谷歌翻译
最近显示外部眼睛照片显示出糖尿病性视网膜疾病和HBA1C升高的迹象。在本文中,我们评估外部眼睛照片是否包含有关其他系统性医疗状况的信息。我们开发了一个深度学习系统(DLS),该系统将外部眼睛的照片作为输入,并预测多个全身参数,例如与肝脏有关的参数(白蛋白,AST);肾脏(EGFR使用无种族的2021 CKD-EPI肌酐方程,尿液ACR);骨与矿物质(钙);甲状腺(TSH);和血数(HGB,WBC,血小板)。开发利用了49,015例糖尿病患者的151,237张图像,在加利福尼亚州洛杉矶县的11个地点接受糖尿病眼镜筛查。评估重点是9个预先指定的全身参数,并利用了3个验证集(a,b,c),涵盖了28,869名患有和没有糖尿病的患者,在加利福尼亚州洛杉矶县和大亚特兰大地区的3个独立地点进行了眼睛筛查。我们将结合了可用临床人口统计学变量的基线模型(例如年龄,性别,种族/种族,糖尿病年)进行了比较。相对于基线,DLS在检测AST> 36,钙<8.6,egfr <60,HGB <11,血小板<150,ACR> = 300和WBC <4时,在检测AST> 36,钙<8.6,Egfr <60,HGB <60,HGB <60,calcium <8.6,Egfr <60,calcium <8.6和wbc <4时,达到了统计学上的显着性能,并且类似于开发集的人口),其中DLS的AUC超过基线的AUC,增长了5.2-19.4%。在验证集B和C方面,与开发集相比,患者人群的差异很大,DLS的表现优于ACR> = 300的基线,而HGB <11升至7.3-13.2%。我们的发现提供了进一步的证据,表明外部眼睛照片包含跨越多器官系统的全身健康生物标志物。需要进一步的工作来研究这些生物标志物是否以及如何转化为临床影响。
translated by 谷歌翻译
为了解决逆问题,已经开发了插件(PNP)方法,可以用呼叫特定于应用程序的DeNoiser在凸优化算法中替换近端步骤,该算法通常使用深神经网络(DNN)实现。尽管这种方法已经成功,但可以改进它们。例如,Denoiser通常经过设计/训练以消除白色高斯噪声,但是PNP算法中的DINOISER输入误差通常远非白色或高斯。近似消息传递(AMP)方法提供了白色和高斯DEOISER输入误差,但仅当正向操作员是一个大的随机矩阵时。在这项工作中,对于基于傅立叶的远期运营商,我们提出了一种基于普遍期望一致性(GEC)近似的PNP算法 - AMP的紧密表弟 - 在每次迭代时提供可预测的错误统计信息,以及新的DNN利用这些统计数据的Denoiser。我们将方法应用于磁共振成像(MRI)图像恢复,并证明其优于现有的PNP和AMP方法。
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译
计算机辅助诊断通常需要分析放射学扫描内的感兴趣区域(ROI),并且ROI可以是器官或子机构。虽然深入学习算法具有优于其他方法的能力,但它们依赖于大量注释数据的可用性。通过解决这一限制的需要,这里提出了一种基于监督和半监督学习的多个器官的定位和检测的方法。它借鉴了作者在CT图像中定位胸椎和腰椎区域的工作者。该方法生成六个感兴趣的器官的边界框,然后将其融合到单个边界框。使用受监督和半监督学习(SSL)在CT图像中的脾脏,左和右肾定位的实验结果证明了与其他状态相比,以更小的数据集和更少的注释来解决数据限制的能力。最新方法。使用三种不同的标记和未标记的数据(即30:70,35:65,40:60)评估SSL性能,分别为腰椎,脾脏左和右肾的每种。结果表明,SSL提供了可行的替代方案,特别是在医学成像中,难以获得注释数据。
translated by 谷歌翻译
在过去十年中,发光二极管(LED)几乎在每个应用中都取代了常见的灯泡,从智能手机中的手电筒到汽车前灯。照亮夜间街道需要LED发出光谱,被人眼被人眼被视为纯白色。与这种白光谱相关的电力不仅分布在贡献波长上,而且在视觉角度上分布。对于许多应用,可用的光线需要在向前的方向上退出LED,即在小角度到垂直。在这项工作中,我们证明了白色LED顶部的专门设计的多层薄膜增加了向前发射的纯白光的功率。因此,推导的多目标优化问题是通过实质物理引导的目标函数重新重新制定,该函数代表了我们工程问题的层次结构。采用贝叶斯优化的变体基于射线跟踪模拟来最大化这种非确定性目标函数。最终,对合适的多层薄膜的光学性质的研究允许识别白光方向性的增加的机制:角度和波长选择性过滤导致多层薄膜与光线的乒乓球发挥作用。
translated by 谷歌翻译
深度网络和决策林(如随机森林和渐变升级树)分别是用于结构化和表格数据的主要机器学习方法。许多论文在一个或两个不同的域(例如,在100个不同的表格数据设置上)经验上比较了大量分类器(例如,在100个不同的表格数据设置)上。然而,使用最具当代最佳实践的仔细概念和经验比较这两种策略尚未进行。概念上,我们说明两者都可以盈利地被视为“分区和投票”方案。具体地,他们俩学习的表示空间是将特征空间分区到凸多台的联合中。对于推理,每个都决定从激活节点的投票。该配方允许统一对这些方法之间关系的基本理解。凭经验,我们对数百个表格数据设置以及多个视觉和听觉设置进行比较这两种策略。我们的重点是在大多数10,000个样本的数据集上,它代表了大部分科学和生物医学数据集。一般而言,我们发现森林在表格和结构化数据(视觉和试镜)上以小样本尺寸的表现,而深网络在具有较大样本尺寸的结构化数据上更好地进行。这表明可以通过进一步结合森林和网络的进一步结合来实现两种情况的进一步提升。我们将继续在未来几个月内修改此技术报告,并更新结果。
translated by 谷歌翻译
学习排名 - 制作特定于查询的项目的排名列表以及一组监督项目 - 是一个普遍兴趣的问题。我们认为的设置是没有分析描述构成良好排名的设置。取而代之的是,我们有一个包含(目标项目,有趣的项目集)对的表示和监督信息的集合。我们在仿真中进行了分析证明,在实际数据示例中,当监督与“这几个相似的项目相似”时,通过使用整数线性程序组合表示来进行排名是有效的。尽管这项提名任务是相当普遍的,但对于特异性,我们从图表中的顶点提名的角度介绍了我们的方法论。本文描述的方法是模型不可知论。
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译